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Abstract

This paper examines the effects of self-consistent collec-
tive oscillations excited in a high-intensity ion beam on the
motion of a test particle in the beam core. Even under
ideal conditions, assuming a constant transverse focusing
force (smooth focusing approximation), and perturbations
about a uniform-density, constant-radius beam, it is found
that collective mode excitations, in combination with the
applied focusing force and the equilibrium self fields, can
eject particles from the beam core to large radii.

1 INTRODUCTION

It is increasingly important to develop improved theoret-
ical models of halo production and control for charged-
particle beam propagation in high-intensity accelerators
and transport systems[1], with applications to spallation
neutron sources, heavy ion fusion, nuclear waste treatment,
and tritium production. While halo formation mechanisms,
such as beam mismatch and nonlinearities associated with
nonuniform space-charge forces have been explored both
analytically and numerically[2, 3], a fundamental under-
standing of halo production is incomplete. In this paper,
we consider anew mechanismfor the production of halo
particles. Namely, we consider, for the first time, the ef-
fects of self-consistent collective oscillations excited in a
high-intensity ion beam on the motion of a test particle
in the beam core. Even under ideal conditions, assuming
a constant transverse focusing force (smooth focusing ap-
proximation), and perturbations about a uniform-density,
constant-radius beam, it is found that collective mode ex-
citations, in combination with the applied focusing force
and the equilibrium self fields, can eject particles from the
beam core to large radii.

2 THEORETICAL MODEL AND
ASSUMPTIONS

We consider an intense nonneutral ion beam with char-
acteristic beam radiusR and axial momentum
bm�bc
propagating in thez-direction with average axial veloc-
ity Vb = �bc = const :. The applied transverse focus-
ing force in thesmooth focusingapproximation is modeled
by Ffoc (x) = �
bm!2f (x^ex + y^ey): The effects of self-
electric and self-magnetic fields on the particle dynamics
are retained in a self-consistent manner, consistent with the
paraxial approximation, and the assumption that Budker’s
parameter satisifes�B = Nb(Ze)

2=mc2 � 
b. Here,Nb

is the number of beam ions per unit axial length, related
to the number density of beam ionsnb(x;y;s ) by Nb =R
dxdyn b, wheres = �bct. The wavenumber equivalent

to the transverse focusing frequency, the transverse focus-
ing coefficient�, is defined by

p
� = !f=�bc, which has

units of inverse length. We further assume axisymmetric
unbunched beam propagation (@=@� = 0 = @=@z), and
introduce the normalized dimensionless self-field potential
 defined by (r; s) = Ze�(r; s)=
3bm�

2

b c
2.

We assume a kinetic or warm-fluid[4] Kapchinksij-
Vladimirskij (KV) beam equilibrium, and for this case the
equilibrium density profilen0b(r; s) has the uniform value
Nb=�R

2 in the beam interior and is equal to zero outside
the beam, defined byr > R(s), whereR(s) is the solution
to the envelope equation[2]. We further assume a matched,
constant-radius beam equilibrium withR(s) = R0, a
constant, given by(� � K=R2

0
)R0 = �2=R3

0
: Here � is

the unnormalized transverse emittance, andK is the self-
field perveance defined byK = 2Nb(Ze)

2=
3bm(�bc)
2.

The “depressed” oscillation wavenumber�� (dimensionless
units) is defined in terms of the transverse focusing coeffi-
cient�, perveanceK, and equilibrium beam radiusR0, by
��2 = 1 �K=�R2

0
: The “depressed” oscillation wavenum-

ber! (dimensional units) is given by!2 = � ��2:
A key focus of the present analysis is to investigate the

motion of atest ionin the combined force of the applied
focusing fieldFfoc , the equilibrium self fields, and the per-
turbed self fields associated with self-consistent collective
oscillations excited in the beam. We express thetotal self-
field potential as (�r;s ) =  0(�r) + � (�r;s ); where 0(�r)
is produced by the step-function equilibrium density pro-
file and �r = r=R0 is the normalized radial coordinate.
For the perturbed potential� (�r;s ), we make use of the
warm-fluid model developed by Lund and Davidson[4].
This model, simplified by the assumptions of cylindrical
symmetry, predicts an infinite class of collective modes
� n, vanishing outside the beam core, with purely radial
dependence, and stably oscillating with eigenfrequency
!n. The radial eigenfunction� n(�r) in the beam inte-
rior (0 � �r < 1) is defined in terms of the Legendre
polynomials (of the first kind),Pn�1(x) and Pn(x), by
� n(�r) = 1

2
An

�
Pn�1(1� 2�r2) + Pn(1� 2�r2)

�
; where

fAng are constant amplitudes. The normal-mode oscilla-
tion wavenumbersf!ng are defined in Ref. [4] by!2n =
�[2+2� �2(2n2 � 1)].

It is readily shown that the equation of motion in the
applied and equilibrium self fields, together with the oscil-
lating collective modes, is given by

d2�r

ds2
+

�
�+

2

R2

0

@ 

@�r2

�
�r =

�P 2

�

�r3
; (1)

where �P� is the (normalized) canonical angular momen-
tum,R2

0
�P� = xy0� yx0, which is a constant of the motion.

Here (�r;s ) =  0(�r)+� (�r;s ), where the eigenfunctions
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are the Legendre polynomials defined above and the eigen-
frequencies aref!ng. Equation (1) is a valid description
of the test ion motion, both inside the beam (�r < 1) and
outside the beam (�r > 1).

For test-particle motion inside the beam, we obtain[6]

d2�r

ds2
+ !2�r �

�P 2

�

�r3
=

K

R2
0

1X
n=1

An� 
0

n(�r) cos!ns: (2)

On the other hand, for particle motion outside the beam,
Eq. (1) reduces to the nonlinear autonomous equation

d2�r

ds2
+

�
�� K

R2

0
�r2

�
�r �

�P 2

�

�r3
= 0: (3)

For case of vanishing angular momentum (meridionalpar-
ticles), setting�P� = 0 in Eqs. (2) and (3) and replacing�r
with �x = x=R0 yields the appropriate equations.

Equations (2) and (3), supplemented by the associated
definitions of� n, f!ng, etc., constitute the final forms of
the test-particle orbit equations to be investigated analyti-
cally and numerically in Secs. 3 and 4.

3 THEORY OF THE DYNAMICAL
SYSTEMS

In this section we examine several features of the test ion
motion analytically, using numerical solutions as verifica-
tion.

3.1 Resonant Behaviour

Meridional Test Ions We begin by consideringmerid-
ional particles with �P� = 0 in a beam supporting a sin-
gle collective mode with eigennumbern. The functional
relationship between thenth mode frequency!n and the
depressed transverse oscillation frequency! makes fun-
damental and principal resonances “inaccessible” for all
mode numbersn. The Hamiltonian expansions predict res-
onances for thenth mode at!n=! = �2m for integers
m � n. Usingf!ng, we can easily obtain an expression
for !2n=!

2 � g2n. The minimum ofgn occurs at��2 = 1
at whichgn = 2n, the uppermost resonance. However, as
this resonance is approached, the coefficient which multi-
plies the mode amplitude,K=R2

0 = �(1� ��2), approaches
zero.

Equation (2) for meridional particles inside a beam sup-
porting ann= 1 mode is a Mathieu equation, the same as
that generated by an envelope oscillationR(s) = R0(1 +
1

2
�e cos!es) in the limit of small�e, taking�e = �1 and
!e = !1. However, it is important to distinguish what
constitutesinside the beam for the two cases. The fluid
modes are derived for perturbations about a constant ra-
dius beam, soinside the beamcorresponds toj�xj < 1,
or jxj < R0. The mismatch ripple, however, requires
jxj < R(s) = R0(1 + 1

2
�e cos!es). SinceR(s) is the

projection of an energy level, particles initially inside the
energy shell of the beam will remain confined in the inte-
rior of a mismatched beam for all time, whereas the beam

edgeR0 of a beam with ann=1 mode is not a node of the
perturbed potential, and so particles may escape.

Test Ions With Nonzero Angular Momentum As a
simple example for particles with nonzero angular momen-
tum �P� 6= 0, we consider perturbations around an interior
circular orbit with constant radius�rc = rc=R0, requiring
that �P 2

� = �r4c!
2. The frequency of small radial oscillations

about the equilibrium orbit is found to be!c = 2!, inde-
pendent of the equilibrium radius�rc. If these orbit oscil-
lations resonate with the collective mode, the particle will
experience a significant energy change.

The linearization for small radial oscillations has funda-
mental and principal resonances when the ratio!1=!c =
1; 2m for integersm � n. For n = 1, the fundamental
resonance is at��2 = 1, and the Mathieu (or principal) res-
onance is at��2 = 1

7
. Both have important effects on the

dynamics of a single particle.

3.2 Non-Resonant Behaviour

It is also possible for a test particle to nonresonantly gain
enough energy in the beam interior to escape the beam, dis-
rupting the process of giving the energy back. All particles
with sufficient energy in the unperturbed case to attain a
radius greater than�x� < 1 will be ejected by the collec-
tive modes into the highly nonlinear region exterior to the
beam at some point of their trajectory. This minimum ex-
pelled radius�x� is a strong function of the mode ampli-
tude strength�, defined as the rms field energy in thenth

mode divided by the rms electrostatic energy in the beam
core. The function�x� may be calculated for lown by
transforming the perturbation in the Hamiltonian to higher-
order[5], yielding a new energy-like invariant, the new ac-
tion ~J , whose maximum is directly related to the maximum
excursion of the perturbed particle trajectory. Forn=2, the
unperturbed maximal radius which will just reach the beam
edge due to the collective mode is given by[6]

�x2� =
�(1 + �c2)�

�
(1 + �c2)

2 + 2�c1!
�1=2

�!c1
: (4)

The valuesc1 andc2 depend only on the depressed trans-
verse frequency and the ratio� � !2=!, which in turn de-
pend only on��, and are given byc1 = c3(21�� 3

4
�3) and

c2 = c3!(�16�+�3), wherec�1
3

= !3(64�20�2+�4).
Here, we define� = (K=R0)

p
�. This expression gives,

within a few percent over a wide range of parameters, the
extent of the region near the beam edge which will be
ejected from the beam at some point of the trajectory. Fig-
ure 1 shows�x� as a function of normalized mode energy
� in a range over which it is an accurate approximation.

4 NUMERICAL RESULTS

The dynamics become more complicated when a trajectory
spends time both inside and outside the beam, and numer-
ical solutions of the equations are easiest under these con-
ditions.
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Figure 1: Plot of�x� versus� (%) for ��2 = 1

4
.

Particles whose energy corresponds to a maximumun-
perturbedtrajectory, which we denote�x0, between�x� and
1 will be ejected from the beam at some point, with the
possibility of large energy gains. In general, ejected par-
ticles either(i) experience negligible energy gains, or(ii)
obtain a well-defined maximum excursion�X1 ' 1:5. This
behaviour is a function of space-charge depression��, rms
field energy in thenth mode relative to rms electrostatic en-
ergy in the beam core� � En=E0, and the ejected particle’s
unperturbed maximum radius�x0.
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Figure 2: Plot of�xmax versus� (%) for ��2 = 1

3
with �x0 =

0:99 (�) and�x0 = 0:95 (4).

�xmax

� (%)

For mode energies less than a certain critical energy
�1(��; �x0), particles go no further than a few percent ofR0

outside of the beam; for energies greater than�1, particles
consistently travel as far out as�X1 ' 1:5 (see Fig. 2). The
value of�1 decreases as the beam becomes more intense,
ranging from less than2% at ��2 = 1

5
to 15% at ��2 = 1

2
.

In addition, particles with�x0 further from the beam edge
have slightly higher critical energies, and of course parti-
cles with �x0 < �x� never leave the beam. The value of
�X1 gradually increases with�, and depends weakly on��.

Since �X1 doesnot depend on�x0, this is the largest radius
any particle initially in the beam can escape to, and func-
tions as a KAM curve, giving an indication of the phase
space structure in the halo region.

Finally, for intense beams with sufficiently large ampli-
tude modes, this phase-space spanning curve can be desta-
bilized and break into islands. Above a critical energy�2,
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Figure 3: Plot of�xmax versus� (%) for ��2 = 1

5
.

particles can explore out to�X2 ' 2 (see Fig. 3). It is
plausible that, for extremely intense beams, larger collec-
tive mode amplitudes would make accessible even greater
regions of phase space.

�xmax

� (%)

5 CONCLUSIONS

We have explored the range of particles capable of being
expelled from the beam core by collective mode excita-
tions, and the maximum radii they can attain as KAM sur-
faces are successively destabilized with increasing pertur-
bation strength. These processes occur under even ideal
conditions, assuming constant transverse focusing force
and a uniform-density matched-beam equilibrium.
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